Friday, 30 July 2010

New Fast NMR technique

Instrument time is precious and a plethora of different fast NMR experiments are continuously being proposed in order to reduce the time required to record an NMR spectrum. Actually, money is not the only reason, there are many other factors which motivate the development of techniques to increase the speed of data collection. For example, if one wants to make real-time studies of kinetic processes or protein folding, it’s pivotal to speed up the acquisition of NMR data, in particular multidimensional spectra.
On this issue, we have just put our bit into this field and published an article which describes the use of localized spectroscopy for parallel multidimensional NMR data acquisition. The key idea is to interleave the data acquisition at a variety of localized bands within a given interscan repetition time.



In other words, the method is based on MRI-type slice selection techniques (e.g. spinecho multislice and gradient echo multislice) where nuclear spins in different parts of the tube are excited and detected during subsequent transients while the previously used spins have time to relax towards equilibrium before being excited again, hence achieving a considerable timesaving in the overall acquisition.
We believe that this method; named PALSY, is a very powerful yet simple and general technique to reduce experimental time. Of course, there is a sensitivity penalty approximately proportional to the number of slices chosen, but the good thing is that the achievable resolution in any dimension is not compromised in any way.
Another point of interest is that it does not require any fancy data processing, just a simple data shuffling operation needed to extract the different sub-spectra contained into the acquired raw data matrix. This operation has been implemented into the Mnova Alpha version and will be available in the next official release. Meanwhile, as always, should anyone be interested in evaluating this alpha version, just drop a comment here and I will get in touch to provide an executable.
The article can be accessed here:

Fast multidimensional localized parallel NMR spectroscopy for the analysis of samples

I would like to take this opportunity to acknowledge and congratulate my friend Manolo for this work. He is the intellectual father of this pulse sequence and is currently extending this idea further to cover other NMR experiments.

Tuesday, 27 July 2010

Riding up the peaks …

… around the Pyrenees. NMR peaks are not the only ones that interest us in Mestrelab, we also love the Cols in the Tour de France, and I have some proof :-) :



Quoting a friend of mine: I had never seen the Yellow Jersey before. It is a bit surprising that the competitors would fight so hard for the right to wear it :-)

Even though I’m not a great fan of Lance Armstrong, I reckon he has incredibly popularized cycling in the US. The guy in the photo has been following him for several years already in the Tour de France, running by the riders. It looks easier than it actually is, as the riders go faster than 20 Km/h (i.e. 3 min/Km) in fairly hefty slopes, so you have to be in a pretty good shape to keep up with them for 200 m (that is approximately the distance he is doing with them).



Well, enough for this off topic post. I will follow up later on tonight with some real NMR stuff.

Friday, 2 July 2010

Fermentanomics


We are now in an era in which a plethora of domains of sciencific investigations are combined with the suffix ‘omics’. These include neologisms such as genomics, proteomics, metabonomics, pharmacogenomics, nutrigenomics and many others.
Scientists at Lilly have now established the basis of a new –omics related discipline which they have dubbed Fermentanomics and consists in a new rapid and robust NMR method for monitoring mammalian cell cultures.
This work has been published as a JACS communication and I’m delighted to see that they have used our Global Spectral Deconvolution (GSD) technique available in Mnova for the extraction of the concentrations of the components from the NMR spectra of the spent media of mammalian cell culture